Transpiration, a prerequisite for long-distance transport of minerals in plants?
نویسندگان
چکیده
The major "benefit" alleged to accrue from transpiration (the evaporative loss of water from plant surfaces) is that it is essential for the long-distance transport of mineral ions, but the possible interrelation between these two processes has rarely been tested. Transpiration was experimentally dissociated from mineral supply by growing sunflowers (Helianthus anuus) in hydroculture and providing mineral nutrients only during the nights. These plants grew as well as a control group that received nutrients only during the day and transpired 12-15 times more water during the exposure period. It thus appears that convective water transport in the xylem, brought about by root pressure and the resultant guttation, "growth water," and Münch's phloem counterflow is in itself sufficient for long-distance mineral supply and that transpiration is not required for this function.
منابع مشابه
The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress...
متن کاملVacuolar sequestration capacity and long-distance metal transport in plants
The vacuole is a pivotal organelle functioning in storage of metabolites, mineral nutrients, and toxicants in higher plants. Accumulating evidence indicates that in addition to its storage role, the vacuole contributes essentially to long-distance transport of metals, through the modulation of Vacuolar sequestration capacity (VSC) which is shown to be primarily controlled by cytosolic metal che...
متن کاملsas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium.
A recessive mutation of Arabidopsis designated sas1 (for sodium overaccumulation in shoot) that was mapped to the bottom of chromosome III resulted in a two- to sevenfold overaccumulation of Na(+) in shoots compared with wild-type plants. sas1 is a pleiotropic mutation that also caused severe growth reduction. The impact of NaCl stress on growth was similar for sas1 and wild-type plants; howeve...
متن کاملSurface Acoustic Waves to Drive Plant Transpiration
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to...
متن کاملA new look at water transport regulation in plants.
Plant function requires effective mechanisms to regulate water transport at a variety of scales. Here, we develop a new theoretical framework describing plant responses to drying soil, based on the relationship between midday and predawn leaf water potentials. The intercept of the relationship (Λ) characterizes the maximum transpiration rate per unit of hydraulic transport capacity, whereas the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 16 شماره
صفحات -
تاریخ انتشار 2001